Graphene Chemical Sensor Project

Completed Technology Project (2012 - 2014)

Project Introduction

Develop graphene based miniaturized chemical sensors that will be able to detect gaseous and volatile molecules with high sensitivity, good reproducibility and wide operating environment, including extreme conditions.

The sensor uses graphene based devices to sense the surface potential of a graphene channel exposed to an analyte. When analyte molecules adsorb onto the graphene surface, they induce a local change in electrical resistance. This effect is very pronounced in graphene due to the high surface area; high electrical conductivity; and inherent low noise, which makes the changes in resistance detectable.

Anticipated Benefits

This technology will benefit missions in several lines of NASA business, including Earth Science, Heliophysics and Planetary Science. It will also address strategic goals of increasing cost efficiency, miniaturization, and extreme environment capability.

The developed technology has a number of commercial applications. It will be useful for many commercial areas such as medical diagnosis, industrial process monitoring, volcanology, environmental monitoring, leak detection, and military use for the detection of chemical, biological agents and explosives.

Graphene Chemical Sensor Project

Table of Contents

Project Introduction			
Anticipated Benefits			
Primary U.S. Work Locations			
and Key Partners	2		
Project Website:			
Organizational Responsibility			
Project Management			
Technology Maturity (TRL)	3		
Technology Areas	3		

Graphene Chemical Sensor Project

Completed Technology Project (2012 - 2014)

Primary U.S. Work Locations and Key Partners

	Organizations Performing Work	Role	Туре	Location
	Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations

Maryland

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

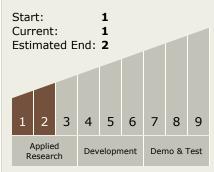
Terry Doiron

Principal Investigator:

Mahmooda Sultana

Co-Investigators:

Shahid Aslam George Manos Mary J Li



Graphene Chemical Sensor Project

Completed Technology Project (2012 - 2014)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.3 In-Situ
 Instruments and Sensors
 └─ TX08.3.4 Environment
 Sensors

Other/Cross-cutting:

- TX06 Human Health, Life Support, and Habitation Systems
 - └─ TX06.4 Environmental Monitoring, Safety, and Emergency Response
 - └─ TX06.4.1 Sensors: Air, Water, Microbial, and Acoustic
- TX08 Sensors and Instruments
 □ TX08.3 In-Situ Instruments and Sensors

Continued on following page.

Center Independent Research & Development: GSFC IRAD

Graphene Chemical Sensor Project

Technology Areas (cont.)

 □ TX08.3.6 Extreme Environments Related to Critical System Health Management

